
AVF Control Nqumber: AVF-VSR-024
SZT-AVF-024

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880O 711.09138
TELESDFIeIeeLOGIC

TeleGen2 SUN-386i Ada Compiler
Version 1,0

Completion of On-Site Testing:
88-06-07

Prepared By:
IABG m. H., tept SZT
Einsteinstrasse 20

8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

Un ,ed States Department of Defense
Washington, D.C. 20301-3081 T

de is a r>;istered tradema'k of the United States Government
Ada Joint Program Office).

1 Approved for 'iblc ublk.,
Dlixtibution UnItlmitoc

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ ISTrRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 7 June 1988 to 7 June 1989
TELESOFT/TeleLOGIC TeleGen2 Sun-3 86i Ada
Compiler. Version i.0, Intel 80386 in SUN-386i 6. PERFORMING ORG. REPORT NUMBER
system (Host and Target). ('O4 71__o) ___

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

IABG,
Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

IABG,
Ottobrunn, Federal Republic of Germany.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 7June 1988
United States Department of Defense 13. NUMBER OF PAGES
Washington, DC 20301-3081 37 p.

14. MONITORING AGENCY NAME & ADORESS(Ifdifferent fro nControlling Office) 15. SECURITY CLASS (ofthis report)
UNCLASSIFIED

IABG, 15a. R A FICATION/DOWNGRADING
Ottobrunn, Federal Republic of Germany. N/A

16. DISTRIBUTION STATEMENT (ofthis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
TeleGen2 SUN-386i Ada Compiler, TELESOFT/TeleLOGIC, IABG, Intel 80386 in SUN-386i system under
SunOS, Version 4.0 (Host and Target), ACVC 1 . 9.

DO ,-um, 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 13 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 SUN-386i Ada Compiler

Compiler Version: Version 1.0

Certificate Number: 88060711.09138

Host and Target:

Intel 80386 in SUN-386i system under SunOS, version 4.0

Testing Completed 88-06-07 Using ACVC 1.9

This report has been reviewed and is approved.

Dr. H. Hummel
Einsteinstrasse 20
8012 Ottobrunn
West Germany

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES ..*........*..............*........1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES1-5

CHAPTER 2, CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED......,..................2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-1

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS.3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER. 3-2
3.4 WITHDRAWN TESTS. 3-2
3.5 INAPPLICABLE TESTS. 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-4
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidatin 3-5
3.7.2 Test Method. 3-6
3.7.3 Test Site. 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

Accession For
APPENDIX D WITHDRAWN TESTS

NTLS GRA&I WO
DTIC T~AR

Avati18bility Coidas
* AvalI and/or

D ~I Spc-Qla.

CHAPTER I

INTRODUCTION

This Validation Summary Report -(VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/NIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by -esting that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 88-06-07 at IABG mbH at Ottobrunn, Federal Republic of Germany.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3.-1,39 (Fern Street)
Washington DC 20301-3081

or from:

IABG m.b.H., Dept SZT
Einsteinstrasse 20
8012 Ottobrunn
West Germany

1-2

INTRODUCT ION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Bgjjr~n~g MinUil £r Ilt 1 Ermimrnning Linguist,
ANSI/MIL1-STD-1815A, February 1983 and ISO 8652-1987.

2. Aj 21)pji1 Yi jjiqj Er~jgg jt Jg~jn Ada Joint
Program Office, 1 January 1987.

Inc., December 1986._

4. Ad 2h1gt Yji1~ijio pCi~giliy UlgrLj igdt December 1986.

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada !2il.jg y1ijgn E =dul and
gi~g1ingj.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. :n the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimateiy

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Vi*thdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. 4 test may be incorrect

1-4

iNTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilat'on listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for exampie, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, f a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to resect programs containing, some
;eatures addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler ii it is comoiled successfully and executes
to Proauce a PASSED message, or if it s rejected by the compiler for an
allowable reason.

1-5

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
multipie, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test pesses if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKJILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--4or example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn From the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: IeleGen2 SUN-386i Ada Compiler, Version 1.0

ACVC Version: 1.9

Certificate Number: B8060711.09138

Host and Target Computer:

Machine: Intel 80386 in SUN-386i system

Operating System: SunOS, version 4.0

Memory Size: 8 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One o- the purposes of validating compilers is to determine the behavior of
a comoiler in those areas of the Ada Standard that permit implementations
*o d1iier. Class 0 and E tests specifically check for such implementation
dii orences. However, tests in other classes also characterize an
in'lementation. The tests demonstrate the following characteristics:

2-1

CONFIGURATION INFORMATION

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64005E..G (3 tests), and 029002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation processes 64 bit integer calculations. (See tests
D4AOO2A, D4AOO2B, D4AOO4A, and D4AOO4B.)

Predefined types.

This implementation supports the additional predefined types
LONG-INTEGER and LONG-FLOAT in the package STANDARD. (See tests
B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTER.MAXINT during compilation, or it may raise
NUMERIC-ERROR or CONSTRAINT-ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently some default initializat'on expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117AA

Assignments for subtypes are performed with -he same precision as
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision. This
imolementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a :omparison or membership test is outside the range of the
base type. (See test C45232A.3

2-2

CONFIGURATION INFORMATION

Apparently NUMERIC-ERROR is raised when a literal operand in a
.fixed-point comparison or membership test is outside the range of
the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AOl4A.)

Array types.

An implementation is allowed to raise NUMERIC-ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

No exception is raised when an array type or subtype with more
than SYSTEM.MAX-INT components is declared. (See test C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice -ssignments. This implementation raises no exception. (See
test E52103Y.)

2-3

CONFIGURATION INFORMATION

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT.ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT-ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type (See
tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT-ERROR is raised if a
bound in a nonnu1l range of a nonnull aggregate does not belong to
an index subtype. (See test E4V211B.)

Re:resentation clauses.

An implementation might legitimately place restrictions on
recresentation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C355071..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE =) 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. Allocated objects must have a minimum allocation size
of 16 bits. (See test A39005B.)

Length clauses with STORAGESIZE specifications for access types
are supported. (See tests A39005C and C87962B.)

Length clauses with STORAGE_5IZE specifications for task types are
supported. (See tests A390050 and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported. An alignment of 16
for the record is required. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures. The pragma
INLINE is not supported for functions. (See tests LA3OO4A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2!01C, EE2201D, and EE2201E.)

The package DIRECTIO cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE21OH, EE2401D, and EE240IG.)

Modes 'NFiLE and OUTFILE are sup:crtad for 3E4UENTUAL_0. 0e
tsts E2102D and CE2102E.)

2-5

CONFIGURATION INFORMATION

Modes IN-.FILE, OUT-.FILE, and INOUT-FILE are supported for
DIRECT-IO. (See tests CE21O2F, CE21021, and CE21O2J.)

RESET and DELETE are supported for SEQUIENTIAL-1J0 and DIRECT-...
(See tests CE210O2G and CE21O2K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL-10 and DIRECT-IG. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUTJ..ILE mode, can be
created in OUT-FILE mode, and can be created in IN-.FILE mode.
(See test EE31O2C.)

More than one internal file can be associated with each external
file for text 1/O for reading only. (See tests CE3111A. .E (5
tests), CE31I4B, and CE3IlSA.)

More than one internal file can be associated with each external
file for sequential 1/O for reading only. (See tests CE21O7A. .D
C4 tests), CE211OB, and CE2111D.)

More than one internal file can be associated with each external
file for direct 1/O for reading only. (See tests CE21O7F. .1 (5
tests), CE211OB, and CE211IH.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE21O7E.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIAL-I.O, DIRECT..IO, and TEXT-.IO. (See
test CE21lOB.)

Temoorary secuential files are given names. Temporary direct
Files are given names. Temoorary 'iles given names are not
deleted when they ire closed. (See tests CE2OS0A and CE2O08C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compiiations.(See test CA1O12A.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3O1iA.)

Generic package declarations and bodies can be compiled in
seoarate cornPi 1atic1ns. (See +escs 2C320n4Cnd320D Ths
tests demonstrate that the Compiler is able to compile generic
package declarations and bodies separately, but these tests are

CONFIGURATION INFORMATION

not applicable for the reason given below and in 3.5.)

This implementation creates a dependence between a generic body

and those units which instantiate it. As allowed by AI-0048/11,

if the body is compiled after a unit that instantiates it, then

that unit becomes obsolete.

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 265 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation and 0 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 20 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

Passea 105 1046 1607 17 11 44 2830

Inapplicable 5 5 246 0 7 2 265

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

- ------ -__ - - -A _h --I -J _2 1 _12 _ _ -----

Passed 190 494 537 245 166 98 141 327 129 36 232 3 232 2830

Inapplicable 14 78 137 3 0 0 2 0 8 0 2 0 21 265

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E2800SC C34004A C35502P A35902C
C35904A C359048 C35AO3E C35AO3R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C85018B C87BO4B CC1311B BC3IO5A ADIAO1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 265 tests were inapplicable for the
reasons indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing
representational values other than (FALSE :> 0, TRUE => 1). These
clauses are not supported by this compiier.

3-2

TEST INFORMATION

C35702A uses SHORT-FLOAT which is not supported by this
implementation.

A39005B uses length clauses with SIZE specifications for
enumeration types which are not supported by this compiler.

A39005G uses a record representation clause which is not supported
by this compiler.

The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C453048 C45502B C45503B C45504B
C45504E C45611B C45613B C456148 C45631B
C45632B B52004E CSSBOB B55BO0D

C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT-INTEGER, LONGINTEGER, FLOAT,
SHORTFLOAT, and LONGFLOAT. This compiler does not support any
such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C4AOI2B contains a variable, which is never used (dead variable).
The compiler legitimately does not generate code for operations
with this variable. As a result, at execution time neither of the
exceptions this program tests for are raised, and the test
produces a "failed"-message.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

CA2009C, CA2009F, BC3204C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. As allowed by AI-00408/11, this compiler
creates a dependency on the missing body so that when the actual
body is compiled, the unit containing the instantiation becomes
obsolete.

CA3OOE, EA3004C, and LA3004A use the INLINE pragma for
croceaures, whicn is not suoooraed by tnis comoiler.

3-3

TEST INFORMATION

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

AEZIOIC, EE22OID, and EE2201E use instantiations of package
SEQUENTIAL-IO with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT-IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2107B..E (4 tests), CE2IO7G..H (3 tests), CE2110B, CE21I1D,
CE2111H, CE3111B..E (4 tests), and CE31148, are inapplicable
because multiple internal files cannot be associated with the same
external file. The proper exception is raised when multiple
access is attempted.

The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L. .Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. .Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L. .Y (14 tests) C46012L. .Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; ano
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 16 Class B tests, 3 Class C tests, and 1
Class E test.

3-4

TEST INFORMATION

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

827005A B71001E B71001K 871001Q B71001V
B97101A B97101E BAIL101C BA3006A BA3006B
BA3,nB7 BA3008A BA3008B BA3013A

For the following class B and E tests a "PRAGMA LIST(ON);" was inserted at
the beginning of the program in order to have a full compilation listing
produced. If a "PRAGMA LIST(ON)" is given anywhere in a program source the
compiler assumes that the compilation listing is to be suppressed until the
"PRAGMA LIST(ON)" appears in the program source, even if the compilation
was started with full listing option. The AVO regards this interpretation
of the Ada Standard as unique and announces further discussions on the
interpretation of PRAGMA LIST.

B28001R B28001V E28002D

T,ie following class C tests were modified for the reasons indicated:

C45651A requires that the result of the expression in line 227 be
in the range given in line 228; however this range excludes some
acceptable results. This implementation passes all other checks
of this test, and the AVO ruled that this test is passed.

C46014A contains a variable, that is never used in the program.
To demonstrate an acceptable behavior of the test a line "86.5"
was inserted into the source of C46014A:
"IF IDENT_INT (II) = 0 THEN COMMENT ("11 = 0"); END IF;".
Vith this modification the test passes.

C96001A assumes that DURATION'SMALL >: SYSTEM'TICK; however, the
Ada standard does not require such a relation. This
implementation executes delay statements with greater accuracy
than CALENDAR'CLOCK can resolve, and so the check on line 97 may
arbitrarily fail or not fail. This implementation passes all
other checks of this test, and the AVO ruled that the test is
passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the SUN-386i Ada Compiler was submitted "o the AVF by the applicant for
review. Anaiysis o these results demons rated that the compiler
uccess~uly passed a!l applicable tests, and the conoiler exhibited the
ex0ec-!: benavior on al inapplicable tests.

3-5

TEST INFORMATION

3.7.2 Test Method

Testing of the SUN-386i Ada Compiler using ACVC Version 1.9 was conducted
at the site of IABG in Ottobrunn, West-Germany, by a validation team from
the AVF. The configuration consisted of a SUN-386i host operating under
SunOS, Version 4.0.

All tests except for the withdrawn tests and tests requiring unsupported
floating-point precisions were copied by TeleLOGIC personel from another
386/Unix-machine to the SUN-386i computer via Ethernet for prevalidation.
The same set of tests was taken for the validation run, tests being checked
for correctness after the validation run. Tests that make use of
implementation-specific values were customized before being downloaded.
Tests requiring modifications during the prevalidation testing were
modified on the SUN-386i after the tests werde downloaded.

The full set of tests was compiled and linked on the SUN-386i, and all
executable tests were run on the SUN-386i. The source code of the tests
and the results produced were transferred via Ethernet to an IABG VAX
computer. From this computer the tests and the results were checked and
archived on magnetic tape.

The compiler was tested using command scripts provided by TeIeLOGIC AB and
reviewed by the validation team. The compiler was tested using the
following option settings:

Qpmi~n If ;

-v output verbose progress messages

-L generate interspersed source-error listing
(B tests only)

-m produce executable code for <main-unit)
(non B non family tests only)

Tests were compiled, linked, and executed (as appropriate) using a sing:e
host computer. Test output, compilation listings, and Job logs oere
captured on magnetic tape and archived at the AVF. The 1istngs examined
by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at IABG mbH at Ottobrunn, Federal Republic of Germany
and was completed on 88-06-07.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

TeleLOGIC AB has submitted the following Declaration of
Conformance concerning the SUN-386i Ada Compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT/TeleLOGIC
Ada Validation Facility: IABG, Munich, West-Germany
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: SUN-386i Ada

Version: 3.20

Host Architecture ISA: Intel 80386 in SUN-386i system

OS&VER #: SunOS, version 4.0

Target Architecture ISA: Same as host

OS&VER #: Same as host

Implementor's Declaration

I, the undersigned, representing TELESOFT and TeleLOGIC, have implemented no deli-
berate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that TELESOFT is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible for maintaining
said compiler(s) in conformance to ANSI/MIL-STD-1815A. All certificates and registra-
tions for the Ada language compiler(s) listed in this declaration shall be made only in the
owner's corporate name.

Date C_
Telelogic A Ada-Produ as Division
Stefan Bjornson, Manager, Systems Software

Owner's Declaration

I, the undersigned, representing TELESOFT and TeleLOGIC take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and agree to the
public disclosure of the final Validation Summary Report. I further agree to continue to
comply with the Ada trademark policy, as defined by the Ada Joint Program Office. I
declare that all of the Ada language compilers listed, and their host/target performance
are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

_ ~Date: 7 3c
Telelogic A, Ada Prodcts Division
Stefan Bjornson, Manager, Systems Software

APPENDX 3

APPENDIX F OF THE Ada STANDARD

"he on'v allowea ,mplementaton dependencies cor-2spond to mplementation-
jeoenaent Dragmas, to :ertain macnine-deppenent .:onventons as mentioned in
:.a:ter 13 of the Ada StandarA, and to cer:ai, allowed Pest-ic*ions on

-eoresenta.ion clauses. Te implementa~ion-dependent onaracteristics of

.ne Sun-386i Ada Compl; er, Version 1.0, are described in the following
sec:; ns, which discuss topics in Apoenaix F of the Aaa Standard.

:ncieient tion-spec;-'ic portions o-. the package 3T NDARD are aiso inciuaec

n ns aoenc i x.

APPENDIX F OF THE LANGUAGE REFERENCE MANUAL

1 Implementation Dependent Pragmas
2 Implementation Dependent Attributes
3 Specification of Package SYSTEM
4 Restrictions on representation clauses
5 Implementation dependent naming
6 Interpretation of expressions in address clauses
7 Restrictions on unchecked conversions
3 1/0 Package chararteristics
9 Definition of STANDARD

APPENDIX F OF THE Ada STANDARD

1. Predefined Pragma

pragma LIST(ONIOFF);
It may appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compilation.
The listing will begin at the first pragma list(ON)
statement if no previous pragma list(OFF) statement
was encountered. Otherwise, the listing will begin
at the top or the source.

Implementation Dependent Pragmas

pragma COMMENT(<stringliteral >);
It may only appear within a compilation unit.
The pragma comment has the effect of embedding the given
sequence of characters in the object code of the
compilation unit.

pragma LINKNAME(<subprogram.name>, <string-literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram.name>. The pragma linkname has the
effect of making string-literal apparent to the linker.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

PACKAGE System IS

TYPE Address is Access Integer;
TYPE Subprogram-Value is PRIVATE;

TYPE Name IS (TeleGen2);

System-Name :CONSTANT name:= TeleGen2;

Storage-Unit: CONSTANT:= 8;
Memory-Size : CONSTANT := (2 ** 31) -1;

B-2

APPENDIX F OF THE Ada STANDARD

- System-Dependent Named Numbers:

Min-Int CONSTANT -(2 ** 31);
Max-Int CONSTANT := (2 ** 31) - 1;
Max-Digits :CONSTANT:= 15;
Max-Mantissa: CONSTANT:= 31;
Fine-Delta :CONSTANT:= 1.0 / (2 * Max-Mantissa);
Tick : CONSTANT := 10.OE-3;

-- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 63;

Max_Text-1o-Count: CONSTANT:= Max lnt;
MaxTextTo_Field : CONSTANT := 1000;

PRVATE
TYPE SubprogramValue IS

RECORD
Proc-addr : Address;
Static-link : Address;

END RECORD;

END System;

4. Restrictions on Representation Clauses

The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE 1) 2)

attribute (LRM 13.2(a))
Length clauses: for access types 'STORAGE-SIZE attritube (TRM13.2(b))
Length Clauses: for tasks types 'STORAGE-SIZE attribute (LRM 13.2(c))
Length clauses: for fixed point types 'SMALL attribute (LRM13.2(d))
Enumeration clauses: for character and enumeration types other than

character and boolean (LRM 13.3)
Record representation clauses (LRM 13.4)
Address Clauses: for objects and entries (LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:

Enumeration clauses: for boolean (LRM 13.3)

1) SIZE is supported only for values equal or greater than what

the compiler would normally allocate for the object.

2) Alignment specifications for records are restricted to multipl

of 1, 2 or 4 storage-units.

APPENDIX F OF THE Ada STANDARD

Address clauses for subprograms, packages, and tasks (LRM 13.5(b))

Note: The 386-UNIX compiler contains a restriction that allocated
objects must have a minimum allocation size of 16 bits.

5. Implementation dependent naming conventions

There are no implementation-generated names denoting
implementation dependent. components.

6. Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types unless the
target type is an unconstrained record or array type.

8. 1/0 Package Characteristics

Instantiations of DIRECTJO and SEQUENTIAL-1O are supported with
the following exceptions:

* Unconstrained array types.

* Unconstrainted types with discriminants without default

values.

* Multiple internal files opened to the same external file may

only be opened for reading.

In DIRECT-IO the type COUNT is defined as follow:

type COUNT is range 0..2_147483_647;

* In TEXT-10 the type COUNT is defined as follows:

type COUNT is range 0..2_147_483_646;

* In TEXT-1O the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

B-.'

APPENDIX F OF THE Ada STANCARD

9. Definition of STANDARD

For this target system the numeric types and their properties are asa follows:

Integer types:

INTEGER

size = 16
first = -32768
last - +32767

LONG-INTEGER

size = 32
first = -2147483648
last = +2147483647

Floating-point types:

FLOAT

size = 32
digits - 6
'small - 2.58494E-26

'large - 1.93428E+25
machine-radix - 2
machine-mantissa - 24
machine-emin -125
machine-emax - +127

APPENDIX F OF THE Ada STANDARD

LONG-FLOAT

size = 64
digits = 15
'small 1 1.94469227433161E-62

'large = 2.57110087081438E+61
machine-radix = 2
machine-mantissa = 53
machineemin =-1021

machine.emax - +1023

Fixed-point types:

SHORT-FIXED

size - 16
delta - 2#1.0#e-15
first - -1.00000
last = +1.0 - 2#1.0#e.15

FIXED

size 32
delta - 2#1.0#e-31
first -1.00000
last - +1.0 - 2#1.0#e-31

DURATION

size = 32
delta 2#1.0#e-14
first - -86400

last +86400

B-6

APPENDIX C

TEST PARAMETERS

Certain tests in the ACYC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Nnt-inj.fl-49-------------------- gf------------------------------

$BIG IDl (1199 :> 'A', 200 :> '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (i..199 :> 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

SBIG ID3 (.. O0>'A',IO0=>'3',1O2..200=>'A'
Identifier the size of the
maximum input line length with
varying middle character.

$BIG 1D4 I .O00:)A',101=>'4' 102 .OO=:'A')
ioentifier the size of the
maximum input line length with
varying middle character.

SBIG INT LIT I..97=)'0'0 & "298"
An integer literal oi value 298
with enougn leading zeroes so
trat it :s the size oi tne
Taximum ine iencgn.

C-2

TEST PARAMETERS

SBIGREAL LIT (I..195=>'0') & '690.0 "

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI (I=)'',2..1=>'A',102=>'"')
A string literal which when
catenated with BIGSTRING2
yields the image of BIG_IDl.

$BIGSTRING2 (1:)'',2..I00=>'A',I01=>'1',I02:>'"')
A string literal which when
catenated to the end of
BIGSTRINGI yields the image of
81G.ID1.

$BLANKS (1..180 => '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483646
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

$FIELDLAST 1000
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FILENAMEWITHBADCHARS X}]Z!Q#$A&'Y
An external file name that
either contains invalid
characters or is too long.

$FILENAME_WITH_WILDCARD_CHAR XYZ*
An external file name that
either contains a wild card
character or is too long.

SGREATERTHANDURATION 86401.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARA14EIERS

$GREATER-.THANDURATION-.BASE-LAST 131072.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL.F ILE_.NA!4E1 BAD.,CHARACTER* A/Z
An external file name which
contains invalid characters.

$1LLEGALEXTERNALF7LENAME2 (1. .120 :)'A')
An external file name which
is too long.

$1NTEGERFIRST W12768
A universal integer literal
whose value is IN7EGER'FIRST.

$INTEGERLAST 32767
A universal integer literal
whiose value is INTEGER'LAST.

*INTEGER_.LASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN-.DURATION -86401.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DUlRATION.

$LESSJHAN_.DURATION.BASE FIRST -131072.0
A universal real literal that 'Is
less than DURATION'BASE'FIRST.

WMX_0DI!TS I
Max4imum digits supported for
floating-point types.

SMAX_!N_.LEN 2100
Maximum input line length
permitted by th7e implementation.

SMAXINT 2147483647
A universal integer literal
wnose value is SYSTEM.MAX-INT.

SM~AX- N1 - LUS_1 2147483Z648
A wniversal integer literal
wnose VaiueisSSE.ANT1

C-3

TEST PARAMETERS

$MAX LEN-INT..BASED-LITERAL "2:" 1 (3. .197=>'0') & "11:"
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be !AX-IN-LEN
long.

$MAX-LENREALBASEDLITERAL "16:" & (4.. 196=>'0') & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LTRL(1=>)'',2..199=>'A',00 =>I'll)
A string literal of size

MAX-.IN..LEN, including the quote
characters.

AMNi N universal integer literal 24837

whose value is SYSTEM.NIN-.INT.

WNME $NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONG-.FLOAT, or LONGINTEGEtR.

SNEG..BASED..INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX-.INT.

C -4

APPENDIX 0

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

528003A: A basic declaration (line 36) wrongly follows a later declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a listing
that has been suspended by a previous "pragma LIST (OFF);"; the Ada
Standard is not clear on this point, and the matter will be reviewed
by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of the

range of the target type T, raising CONSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality operators.

A35902C: Line 17's assignment of the nomimal upper bound of a fixed-point type
to an object of that type raises CONSTRAINTERROR, for that value lies
outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly raises
CONSTRAINT ERROR, because its upper bound exceeds that of the type.

^35904B: The subtype declaration that is expected to raise CONSTRAINTERROR
when its compatibility is checked against that of various types
passed as actual generic parameters, may in -act raise NUMERICERROR
or CONSTRAINT-ERROR for reasons not anticipated by the test.

CS5AO3E, These tests assume that attribute 'MANTISSA returns 0 when applied to
& R: a fixed-point type with a null range, but the Ada Standard doesn't

support this assumption.

C-372.3H: The subtype declaration of SCONS in line 100 is wrongly expected to
raise an except:on wnen elatorated.

C37213J: The aggregate in line 45 wrongly raises CONSTRAINTERROR.

D-1

WITHDRAWN TESTS

A

C37215C, Various discriminant constraints are wrongly expected to be incom-
E, G, H: patible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises CONSTRAINT_ERROR.
C41402A: 'STORAGESIZE is wrongly applied to an object of an access type.

C45332A: The test expects that either an expression in line 52 will raise an
exception or else MACHINE_OVERFLOWS is FALSE. However, an implemen-
tation may evaluate the expression correctly using a type with a
wider range than the base type of the operands, and MACHINEOVERFLOWS
may still be TRUE.

C45614C: REPORT.IDENTINT has an argument of the wrong type (LONGINTEGER).

A74106C, A bound specified in a fixed-point subtype declaration lies outside of
C85018B , that calculated for the base type, raising CONSTRAINTERROR. Errors
C87BO4B, of this sort occur in lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253
CC1311B: of the four tests, respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are legal.

ADIAO1A: The declaration of subtype INT3 raises CONSTRAINT-ERROR for imple-
mentations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 0 1U7 contain the wrong values.

CE3208A: This test expects that an attempt to open the default output file
(after it was closed) with mode IN-FILE raises NAME-ERROR or
USE ERROR; by Commentary AI-00048, MODEERROR should be raised.

D-2

